Sunday, January 17, 2021

My Systems (2021)

Updated 5/21/2023 with Beelink system

2021 brings upgrades to the computers in the house that has been fairly static over the past 7-8 years.   I got a couple of new systems and repurposed some parts from the old systems so this post is mainly to inventory the new configurations for my own reference.



System 1 (Asus PN50 4800U) [replaces system 3]

  • Ryzen 7 4800U [Zen2] (8 cores / 16 threads, base clock 1.8GHz, max 4.2GHz - 8 GPU cores - RX Vega 8, 15W)
  • 32 GB Crucial DDR4 3200Mhz  RAM (2x16GB)
  • 1TB Samsung 970 EVO Plus (M.2 NVMe interface) SSD
  • 500GB Crucial MX500 SATA SSD (2.5")
  • Intel WIFI 6, BT 5.0
  • 2 Dell U2311H (existing) monitors
  • 1 Dell U2421HE (24" 1080p) monitor
  • Dell AC511M soundbar
  • Unicomp Ultra Classic keyboard (2009)
  • Logitech Wheel Mouse

The PN50 replaced my trusty Shuttle DS87 as my daily driver.  All the components are new except for the two Dell U2311H monitors, keyboard and mouse.  I added a third monitor, Dell U2421HE, because it has ethernet and a USB-C interface that can connect with the PN50 for DisplayPort, USB hub and ethernet.  This lowered the number of cables between the PN50 and peripherals and reduced clutter on my desk.

Despite its small size, the PN50 is still very high performing, but you do pay a price premium for having something small AND fast.  I did lose some connectivity (fewer USB ports and only 1 Ethernet port).  The USB ports can be addressed with a hub and I use the monitor's built-in ethernet port for the one I loss since the PN50 only has one.

The Dell AC511M is a USB soundbar and can be attached to the monitor stand (not to the monitor itself).  It draws its power from the USB connection but I found three flaws with it: 
  1. It has no power button so it turns on when the PC turns on.  To use the audio-in jack and the speaker means the PC must be turned on. 
  2. The speaker has a hiss to it like many speakers but with no power button the hiss is always there.  I had to plug something into the headphone jack so I don't hear it.
  3. When something is plugged into the audio-in jack no audio goes through the USB.  If there are two audio sources (e.g. PC and music player) they need to share a connection.  I have two PCs connected to the monitor (one on display port and one on hdmi) and I can't have one play through USB and one through the audio in without plugging-and-unplugging the audio-in cable.  Instead, I have a cable from the monitor's audio-out to the soundbar's audio-in and each machine plays through the DP/HDMI outputs.
My ideal system would still be to have a something like the DS87 housing with a Ryzen 4700G (or 5700G), but those CPUs aren't very readily available and there is not DS87-like small form factor cases for them.  Update:  The day after I posted this, Shuttle announced this exact PC.  ^_^;  With my new monitor, though, I would like the new Shuttle to have an USB Type C connection, but at least if I wanted to get more power then I know the option is now out there!

System 2 (Asus PN50 4500U) (replaces system 4)

  • Ryzen 5 4500U [Zen2] (6 cores / 6 threads, base clock 2.3GHz, max 4.0GHz - 6 GPU cores - RX Vega 6, 15W)
  • 2x 8GB 3200 DDR4 so-dimm by SK hynix
  • Intel 660p Series m.2 500GB SSD
  • Intel WI-FI 6 (GIG+) + BT 5.0
  • *Crucial 128BG m4 2.5" SSD

This system replaces my wife's Shuttle XH61 system and is an upgrade across the board over its predecessor.

System 3 (Shuttle DS87)

  • Shuttle PC DS87
  • Intel Core i7-4790S Processor (4 cores / 8 threads, 8M Cache, base clock 3.2 GHz, max 4.0GHz, 65W)
  • Samsung 850 EVO 500GB 2.5-Inch SATA III Internal SSD (MZ-75E500B/AM)
  • 2 x Crucial 16GB Kit (8GBx2) DDR3 1600 MT/s (PC3-12800)
  • *Intel Network 7260.HMWG WiFi Wireless-AC 7260 H/T Dual Band 2x2 AC+Bluetooth HMC
  • *Samsung 840 EVO Series 120GB mSATA3 SSD

This Shuttle had been my reliable daily driver for over 6 years running Linux.  I repurposed an Samsung SSD and Intel wireless card from my Asus VivoMini to install Windows and add WIFI and bluetooth to the system.   The antennas that was in the VivoMini was hard to extract so I took the antennas from an old ASUS Chromebook laptop that wasn't being used anymore.  

The VivoMini was being used for kid's remote/distance learning but was a bit under-powered for handling some of the video conferencing features so this system will now take its place.

System 4 (Shuttle XH61)

  • Intel Core i7-2600S Processor (4 cores / 8 threads, 8M Cache, base clock 2.8 GHz, max 3.8GHz, 65W)
  • *Seagate 300GB 7200RPM HDD Cosair MX500 CT500MX500SSD1 500GB 2.5in SATA 6Gbps SSD
  • TP-Link USB WiFi Adapter for Desktop PC, AC1300Mbps USB 3.0 WiFi Dual Band Network Adapter with 2.4GHz/5GHz High Gain Antenna, MU-MIMO
  • 8GB RAM

This system was originally put together in 2012 (with an SSD) and even in 2020 was a perfectly good system for most tasks.  When running Windows 10 or some basic games (Minecraft, Don't Starve) it still felt pretty snappy.  I wouldn't try running any graphics intensive games on it.  

The SSD from this system was moved to the PN50-4500U (system 2) and replaced with a 2.5" Seagate 300GB 7200RPM hard disk drive that I pulled out of the Chromebook laptop that I pulled the antenna from.  After switching to the mechanical disk drive, the system felt noticeably sluggish.  A solid state drive makes a big difference!  

I'm keeping this system around for schooling.


System 5 (ASUS PN50 4300U)

  • Ryzen 3 4300U [Zen2] (4 cores / 4 threads, base clock 2.7GHz, max 3.7GHz - 5 GPU cores - RX Vega 5, 15W)
  • 16 GB Crucial (CT8G4SFRA32A) DDR4 3200Mhz  RAM (2x8 GB)
  • 500GB Samsung 970 EVO Plus (M.2 NVMe interface) SSD

This system is meant to be a more portable system for when I'm working at another location.  I paired this up with a portable monitor rather then getting a laptop since I don't need this to be a mobile system but one that I can easily transport.


System 6 (Beelink SER5)

This latest addition was added in 2023 as a secondary gaming PC.  The specs are decent given the price of under $300 including Windows.

  • Ryzen 5 5500U (6 cores / 12 threads, base clock 2.1GHz, max 4.0 GHz, 7 core GPU,  @ 1800 MHz, 15W TDP)
  • 16 GB DDR4
  • 500GB NVME M.2 SSD
  • WiFi 6
  • BT 5.2
The system came with Windows 11 Pro.

ASUS VivoMINI UN62


The ASUS VivoMini UN62 is a wonderfully small and quiet bare bones system with very good build quality.  It was this system that gave me confidence in getting the ASUS PN50.  I actually own 3 of these system and use them for different purposes which have changed over time (e.g. media station, always-on server for minecraft, etc).  More recently, however, the Raspberry Pi 4  have replaced the VivoMinis for some of the tasks.

The specs for my UN62s are:
  • Intel i3-4030U (2 cores / 4 threads, 1.9 GHz, 3 MB cache, 15W)
  • 16GB Crucial (2x8 GB DDR3-1600) 204-pin sodimm
  • Samsung 840 EVO 128GB msata3 SDD
  • Intel Network 7260.HMWG WiFi Wireless-AC 7260 H/T Dual Band 2x2 AC+Bluetooth HMC
Two served as the kids' computers until I upgraded their setup.  One was repurposed as the machine for schooling when remote/distance learning was put in place due to covid-19.  This system was replaced by System 3 and its drive and wireless card got moved to that system.

Raspberry Pi 4

  • Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz
  • 4G BLPDDR4-3200 SDRAM
  • 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0, BLE
  • Gigabit Ethernet
  • 2 USB 3.0 ports; 2 USB 2.0 ports.
  • Raspberry Pi standard 40 pin GPIO header (fully backwards compatible with previous boards)
  • 2 × micro-HDMI ports (up to 4kp60 supported)
  • 2-lane MIPI DSI display port
  • 2-lane MIPI CSI camera port
  • 4-pole stereo audio and composite video port
  • H.265 (4kp60 decode), H264 (1080p60 decode, 1080p30 encode)
  • OpenGL ES 3.0 graphics
  • Micro-SD card slot for loading operating system and data storage
  • 5V DC via USB-C connector (minimum 3A*)
  • 5V DC via GPIO header (minimum 3A*)
  • Power over Ethernet (PoE) enabled (requires separate PoE HAT)
  • Operating temperature: 0 – 50 degrees C ambient
  • Raspberry Pi ICE Tower Cooler, RGB Cooling Fan (excessive but looks cool on the desk).

The Raspberry Pi 4 is a small wonder of a machine that replaces what I originally used the ASUS VivoMini for and is significantly cheaper.


Friday, January 1, 2021

Installing Windows after Linux On Separate Disks

*** Update Feb. 28, 2021 ***

After having gotten both Linux and Windows dual-booting, I had to wipe and reinstall Windows 10.  This time, however, Windows 10 refused to install and gave a message saying "We couldn't create a new partition or locate an existing one."

This is caused by Windows being confused because there is another drive with a primary partition.  Even though you can tell Windows which drive you want it to be installed on, it still can't figure out how to install itself.  After trying a few different things, the solution was to unplug the other drive, install Windows and the plug the other drive back in.

If you are using GRUB as the boot manager the Windows entry will need to be updated or you'll get an error message when trying to boot into Windows.  To update the GRUB configuration with the proper Windows values you'll need to run grub2-mkconfig and write the results to the configuration file.

For MBR setups:

sudo grub2-mkconfig -o /boot/grub2/grub.cfg

For EFI setups:

sudo grub2-mkconfig -o /boot/efi/EFI/fedora/grub.cfg 

Leaving out the -o option will print the config to screen so you can see it first before overwriting the config.


*** Original Post ***

For my new system, I also added a second SSD that is intended for installing Windows 10.  My primary daily driver is Fedora Linux so I installed it first and it's on the primary drive.  

I don't use Windows very often but I might use it to play some games with the family so I'm okay with dual booting for this purpose.  I've not played with  dual-booting Linux and Windows in a very long time.  It's not something I recommend to someone who switch between the two operating systems frequently nor to someone who very rarely use one of them.  Rarely using one operating systems means it isn't updated so when it is needed there might be a lot of lost time getting the operating system updated and running again.

Setting up dual booting can also be a pain as one operating system might mess with the booting of the others (Windows tends to be the more frequent offender here as it doesn't really like to recognize non-Windows systems).  Most documentation I found suggests installing Windows first and then Linux so that the Linux boot manager (GRUB) can find Windows and add it to the boot options.   However, there's still a possibility that a Windows update can mess up GRUB and then it needs to be restored.  Another slight disadvantage is that it adds additional time for booting since there needs to be some pause to let users pick the right OS they want to run.

What I did was to install Linux first on one drive and then install Windows on complete separate drives so the boot manager of each drive is not effected by the other operating system.  I rely on the BIOS (yes, I know, force of habit to call it the BIOS) to select which drive to boot.  

After Linux was installed on disk "1", I installed Windows on disk "2" (Windows called it disk 0).  Whenever it rebooted, I made sure to tell the BIOS to boot of the Windows drives and not the default Linux drive.

Fortunately, the Asus BIOS's boot options include an Boot Override option to boot a specific drive without having to permanently change the boot order.  The other nice thing is that GRUB has the option to go back to the BIOS boot if I missed hitting the DEL key to get into the BIOS.  When I run Linux it is a no-op and when I need to run Windows it's a an extra 1-2 key strokes during boot.

The only issue that I had was that after Windows was installed there was an error message because of Secure Boot.  The simplest work-around is to disable Secure Boot in the BIOS so it can continue the booth process into either Linux or Windows.  I'm still learning about Secure Boot to see how to make it work with this configuration.

2021 PC - Asus PN50 4800U

Although I was very tempted to build a new desktop PC and get access to all the power goodness of the latest AMD Ryzen, I was hesitant giving up the small form factor that I had with my Shuttle PC DS87.  When the Asus PN50 with the AMD Ryzen 4800U became available I took the plunge.

The specs comparison between the previous and new PCs:

New PC:

  • Ryzen 7 4800U [Zen2] (8 cores / 16 threads, base clock 1.8GHz, max 4.2GHz - 8 GPU cores - RX Vega 8, 15W)
  • 32 GB Crucial DDR4 3200Mhz  RAM (2x16GB)
  • 1TB Samsung 970 EVO Plus (M.2 NVMe interface) SSD
  • 500GB Crucial MX500 SATA SSD (2.5")
  • Intel WIFI 6, BT 5.0

Previous PC:

  • Shuttle PC DS87
  • Intel Core i7-4790S Processor (8M Cache, base clock 3.2 GHz, max 4.0GHz, 65W)
  • Samsung 850 EVO 500GB 2.5-Inch SATA III Internal SSD (MZ-75E500B/AM)
  • 2 x Crucial 16GB Kit (8GBx2) DDR3 1600 MT/s (PC3-12800)

There are enough sites giving benchmarks so I'm not going to try to repeat what they've done, but I wanted to have something to show myself a tangible performance improvement.  It is generally during compilation when I wish things would go faster so why not compare compilation between the two systems?  The multi-core (8 vs 4) and multi-thread (16 vs 8) should benefit compilation even if the base clock of the 4800U is 1.8GHz while the i7 is 3.2GHz.  I'm expecting modern CPU is also more efficient per clock cycle then an 6 year old CPU.

I decided to time the compilation of OpenCV using the following

wget -O opencv.zip https://github.com/opencv/opencv/archive/master.zip
unzip opencv.zip 
mkdir -p build && cd build
cmake ../opencv-master/
time cmake --build .

i7 Results

real   28m57.219s
user   26m48.466s
sys     2m01.402s

4800U Results

real     36m48.166s
user     34m54.722s
sys       1m52.574s

How did this happen?  Was it that the 3.2-4.0 GHz too much for the 1.8-4.2GHz to overcome?  It did seem like during compilation all of the i7 cores was running at around 3.6 GHZ, but I suspected that the compiler was not actually taking advantage of all the cores of the 4800U.

I tried again using Ninja which automatically configures the build to use the multi-core CPUs.

make clean
cmake -GNinja ../opencv-master/
time ninja

i7 Results

real	11m28.741s
user	85m39.188s
sys	 3m23.310s

4800U Results

real      6m39.268s
user     99m03.178s
sys       4m8.597s

This result looks more like what I expected.  More of the system cycles were used on both the i7 and 4800U as more cores and threads were utilized but the real time was much shorter.  This just shows that for a lot of consumers fewer cores but faster clock speeds might be better for desktops (laptops and battery life adds another dimension) as they rely on the applications to be programmed to take advantage of the multiple cores.  That's why gamer systems usually will give up more cores for faster clock speeds since games aren't known for utilizing multiple cores.